Posts

Floor dimmer switch

Floor Mounted Dimmer Switch

When it comes to controlling lights with our Infinitybox system, you have many different options.  This is especially true for your headlights and high-beams.  You can see earlier blog posts about wiring headlights and high-beams by clicking these links.  In most cases, you are going to use the headlight and high-beam outputs on the front POWERCELL.  These are controlled by their own inputs connected to different switches on your dash or the steering column.  You can also use a floor-mounted headlight dimmer switch to switch between the headlights and high-beams in your car.  This blog post will show you the details.

The floor dimmer switch is designed to toggle between the headlights and high-beams.  The headlight switch brought power to a common terminal on the switch.  The headlights and the high-beams wired to their respective output terminals on the switch.  When you turn on the headlight switch, power is applied to the dimmer switch on the floor.  Pressing this switch with your foot toggles between the headlights and high-beams.  When you turn off the headlight switch, there is no power at the switch so your headlights and high-beams turn off.

Floor dimmer switch

Picture of a floor headlight dimmer switch

Wiring a floor dimmer switch is simple with the Infinitybox system.  First, you are going to wire your headlight switch to the headlight input going to the MASTERCELL.  Remember that the MASTERCELL inputs are ground switched.  When the headlight input is switched to ground, the MASTERCELL will tell the front POWERCELL to turn on the output for the headlights.  We have many different wiring diagrams showing different how to wire different headlight switches in the Resources section of our website.  This link will take you to the wiring details for the most common GM-style headlight switch.

If you are going to use a dimmer switch on floor to switch between headlights and high-beams, you will not need to use the high-beam output on your front POWERCELL.  This opens up this output to be used for other accessories or auxiliary functions.

Next, you are going to connect the headlight output from your front POWERCELL to the common terminal on your dimmer switch.  In most cases, this is the center terminal on the switch.  It may also be labeled as “From Headlight Switch”.  Check the wiring diagram for your specific switch.

Next, you are going to connect the output terminals from your dimmer switch to your headlight bulbs and high-beam bulbs.  The terminals on your switch should be labeled for the headlights and high-beams.  Check the wiring diagram for your specific switch for more details.

Lastly, you can tap off the high-beam terminal on the dimmer switch with a wire for the high-beam indicator on your dash.

This wiring diagram shows the connection from the MASTERCELL to the headlight switch, the headlight output from the POWERCELL to the dimmer switch, the connections from the dimmer switch to the headlights & high-beams and the connection for the high-beam indicator on the dash.

Floor dimmer switch wiring diagram image

Picture showing wiring diagram for a floor mounted headlight dimmer switch.

You can download a PDF version of this wiring diagram by clicking this link.

Reach out to our team if you have any questions about wiring a floor dimmer switch to control your headlights and high-beams with the Infinitybox system.  You can call us at (847) 232-1991 or click on this link to contact our team directly.

High-Beam Switch

We have the turn-signal switches, horn switch and 4-way switch wired to the IDIDIT steering column in this 1967 wiring project.  Our next step is to wire the high-beam switch.

You have several options to wire your high-beam switch.  The high-beams work just like any other output in the Infinitybox system.  There is a dedicated output on the front POWERCELL that is for the high-beams.  This output gets wired to both of the high-beam bulbs in the front of the car.  The other side of the bulbs connects to ground.

The MASTERCELL connects to the high-beam switch.  When the MASTERCELL input is grounded though the switch, the MASTERCELL sends a command to the front POWERCELL to turn on the high-beams.  Your high-beam switch can be a toggle switch on the dash, a motion on the turn signal stalk or even a push button on the floor.

In the case of this 1967 Mustang install, the customer chose to use our Alternating Headlight Toggle Option that is built into the 20-Circuit Kit.  Here’s how this works.  You connect the Alternating Headlight Toggle input in the MASTERCELL harness to one contact on a momentary button.  You ground the other side of the button.  When you press the button, you connect the MASTERCELL input to ground.

If you press and hold the momentary button with the headlights off, the MASTERCELL will tell the front POWERCELL to turn on the high-beams.  The high-beams will stay on as long as your finger is holding the button.  When you release the button, the high-beams will turn off.  You would use this as your flash-to-pass button.

If you press and release the momentary button with the headlights on, the MASTERCELL will tell the front POWERCELL to toggle between the headlights and high-beams.  It will turn the headlights off then turn the high-beams on.  If you press and release the momentary button again, the MASTERCELL will tell the front POWERCELL to turn the high-beams off and turn on the headlights.  This is a very simple and cool feature.

Our customer chose the Tilt Lever Momentary Switch 510168 option with their steering column.  This gives them a momentary button at the end of the turn-signal stalk.  This is a perfect way to control your high-beams.  Pressing the button with the headlights off gets you flash-to-pass.  Pressing and releasing the button with the headlights on, will control your high-beams.

IDIDIT has some very specific instructions for installing this Tilt Lever Momentary Switch to the column.  You can link to these instructions at this link.  The grey wire going to the momentary switch will connect to the Alternating Headlight Toggle input going to the MASTERCELL.  In our configuration, this is the green-red wire on the MASTERCELL A harness.  That is input 22.  Please refer to your configuration sheet since different configurations may have different wire assignments.

IDIDIT makes some good points in their instructions about grounding the tilt lever.  Be sure to follow their instructions carefully for installing this option.

Please contact us with questions about wiring your high-beam switch to our Infinitybox MASTERCELL.  Click this link to get in contact with a member of our technical support team.

Picture of a headlight switch manufactured by Standard Motor Products

Headlight Switch

It’s time to wire in the headlight switch in our customer’s 1967 Mustang.  They are installing our 20-Circuit Kit in the car.  In previous posts, we blogged about wiring the headlights and parking lights to the outputs on the POWERCELLs in the car.  You can read about that process at this link.

Remember that there is no direct connection between your switches and the things that you are switching.  In this case, there is no direct connection between the headlight switch and the headlight bulbs in the front of the car.  The headlight switch connects to the MASTERCELL.  The headlight bulbs connect to the POWERCELL.  The MASTERCELL and POWERCELLs are connected with our CAN data cable.  When you turn on the headlight switch, the MASTERCELL sees the switch turn on.  It sends a command to the POWERCELL in the front of the car and commands it to turn the output on that powers the headlight bulbs.  The same thing happens when you turn on your parking lights.  The MASTERCELL sees the parking light switch turn on.  It sends a command to the POWERCELLs in the front and rear of the car.  Each of these POWERCELLs turn on parking light outputs locally in the car.

Our customer started with the original headlight switch that came with the car.  After some checking and testing of the switch, they figured out that the switch was bad.  Something inside the switch failed.

Picture showing how to use a multimeter to check continuity between terminals on a headlight switch

Picture showing how to use a multimeter to check continuity between terminals on a headlight switch

They wanted to keep the traditional pull-type headlight switch in the car so they picked up a replacement switch made by Standard Motor Products.  This what the switch looks like.

Picture of a headlight switch manufactured by Standard Motor Products

Picture of a headlight switch manufactured by Standard Motor Products

This is a multi-function switch.  It controls the parking and headlights in the car.  You get the parking lights when you pull the switch to the first detent.  You get both the parking lights and headlights when you pull the switch to the second position.

This is a very common switch, used in lots of different cars.  We created a specific wiring diagram showing how to wire your MASTERCELL inputs to the terminals on the switch.  This picture shows you the diagram.

Picture of a wiring diagram for a typical headlight switch

Picture of a wiring diagram for a typical headlight switch

You can download a PDF of this diagram by clicking this link.

The first thing that we did was to check the configuration sheet for this system.  You can get more details on the configuration sheet for your system by clicking this link.  The MASTERCELL inputs for the headlights and parking lights are going to connect to the switch.  The headlight input is the white wire with the green tracer.  The parking light input is the blue wire with the black tracer.  Both of these inputs are on the MASTERCELL input harness.  You also need three ground connections to this switch.  Two of the terminals need to be grounded and the switch housing needs to be connected to ground.  You can use the black wires that came in the MASTERCELL input harness as grounds for this switch.  One of the MASTERCELL ground wires can handle the ground for the entire switch.  Just jumper that black wire between the different terminals on the switch and the case.

Follow the diagram to see which terminals on the headlight switch connect to the headlight and parking light input wires on the MASTERCELL.  This is pretty simple.

Once you have the input wires connected and the grounds connected, you have wired the inputs for the headlights and parking lights.  When you pull the switch to the first position, the switch connects the parking light input wire to ground.  This sends the signal to the MASTERCELL to control the lights through the front and rear POWERCELLs.  When you pull the switch to the second position, the switch connects the headlight input to ground.  This triggers the MASTERCELL to control the headlights from the front POWERCELL.  When the switch is in the headlight position, the switch also keeps the parking light input connected to ground.

Once you have the headlight and parking light inputs wired, you can also use this switch to control and dim your dash lights.  This specific switch has a rheostat built in to dim dash lights.  In most cases, you are powering your dash lights off of your parking light output.  See this blog post for more details.  You will have power to your dash lights when the parking lights or headlights are on from this switch.

This switch has a rheostat built in to dim the dash lights.  A rheostat is a variable resistor.  Turning the knob, increases or decreases the resistance in series with the dash lights.  This lets more or less current flow to the dash lights, which will dim or brighten them.  Please note that the dimming effect may not be as significant when using LED dash lights.

You can wire the dash light feed though the rheostat on the headlight switch.  See the wiring diagram above for the details of which terminals need to connect to the wires.  Please note that there is a metal jumper that must be cut to do this.  If you do not remove this metal jumper, you will damage your MASTERCELL inputs and potentially void the warranty.

That’s it.  This one post covers wiring  your parking light input, your headlight and your dash lights.  Please click this link to contact our team with any questions about our Infinitybox system.